High-dimensional mediation analysis with de-biased lasso penalty
Source:R/hima_dblasso.R
hima_dblasso.Rd
hima_dblasso
is used to estimate and test high-dimensional mediation effects using de-biased lasso penalty.
Usage
hima_dblasso(
X,
M,
Y,
COV = NULL,
topN = NULL,
scale = TRUE,
FDRcut = 0.05,
verbose = FALSE
)
Arguments
- X
a vector of exposure. Do not use
data.frame
ormatrix
.- M
a
data.frame
ormatrix
of high-dimensional mediators. Rows represent samples, columns represent variables.- Y
a vector of outcome. Can be either continuous or binary (0-1). Do not use
data.frame
ormatrix
.- COV
a
data.frame
ormatrix
of covariates dataset for testing the association M ~ X and Y ~ M.- topN
an integer specifying the number of top markers from sure independent screening. Default =
NULL
. IfNULL
,topN
will beceiling(n/log(n))
, wheren
is the sample size. If the sample size is greater than topN (pre-specified or calculated), all mediators will be included in the test (i.e. low-dimensional scenario).- scale
logical. Should the function scale the data? Default =
TRUE
.- FDRcut
HDMT pointwise FDR cutoff applied to select significant mediators. Default =
0.05
.- verbose
logical. Should the function be verbose? Default =
FALSE
.
Value
A data.frame containing mediation testing results of significant mediators (FDR <FDRcut
).
- Index:
mediation name of selected significant mediator.
- alpha_hat:
coefficient estimates of exposure (X) –> mediators (M) (adjusted for covariates).
- alpha_se:
standard error for alpha.
- beta_hat:
coefficient estimates of mediators (M) –> outcome (Y) (adjusted for covariates and exposure).
- beta_se:
standard error for beta.
- IDE:
mediation (indirect) effect, i.e., alpha*beta.
- rimp:
relative importance of the mediator.
- pmax:
joint raw p-value of selected significant mediator (based on HDMT pointwise FDR method).
References
Perera C, Zhang H, Zheng Y, Hou L, Qu A, Zheng C, Xie K, Liu L. HIMA2: high-dimensional mediation analysis and its application in epigenome-wide DNA methylation data. BMC Bioinformatics. 2022. DOI: 10.1186/s12859-022-04748-1. PMID: 35879655; PMCID: PMC9310002
Examples
if (FALSE) { # \dontrun{
# Note: In the following examples, M1, M2, and M3 are true mediators.
# Y is continuous and normally distributed
# Example:
head(ContinuousOutcome$PhenoData)
hima_dblasso.fit <- hima_dblasso(
X = ContinuousOutcome$PhenoData$Treatment,
Y = ContinuousOutcome$PhenoData$Outcome,
M = ContinuousOutcome$Mediator,
COV = ContinuousOutcome$PhenoData[, c("Sex", "Age")],
scale = FALSE, # Disabled only for simulation data
FDRcut = 0.05,
verbose = TRUE
)
hima_dblasso.fit
} # }