High-dimensional mediation analysis for compositional microbiome data
Source:R/hima_microbiome.R
hima_microbiome.Rd
hima_microbiome
is used to estimate and test high-dimensional mediation effects for compositional microbiome data.
Arguments
- X
a vector of exposure. Do not use
data.frame
ormatrix
.- OTU
a
data.frame
ormatrix
of high-dimensional Operational Taxonomic Unit (OTU) data (mediators). Rows represent samples, columns represent variables.- Y
a vector of continuous outcome. Binary outcome is not allowed. Do not use
data.frame
ormatrix
.- COV
a
data.frame
ormatrix
of adjusting covariates. Rows represent samples, columns represent microbiome variables. Can beNULL
.- FDRcut
Hommel FDR cutoff applied to select significant mediators. Default =
0.05
.- verbose
logical. Should the function be verbose? Default =
FALSE
.
Value
A data.frame containing mediation testing results of significant mediators (FDR <FDRcut
).
- Index:
mediation name of selected significant mediator.
- alpha_hat:
coefficient estimates of exposure (X) –> mediators (M) (adjusted for covariates).
- alpha_se:
standard error for alpha.
- beta_hat:
coefficient estimates of mediators (M) –> outcome (Y) (adjusted for covariates and exposure).
- beta_se:
standard error for beta.
- IDE:
mediation (indirect) effect, i.e., alpha*beta.
- rimp:
relative importance of the mediator.
- pmax:
joint raw p-value of selected significant mediator (based on Hommel FDR method).
References
1. Zhang H, Chen J, Feng Y, Wang C, Li H, Liu L. Mediation effect selection in high-dimensional and compositional microbiome data. Stat Med. 2021. DOI: 10.1002/sim.8808. PMID: 33205470; PMCID: PMC7855955
2. Zhang H, Chen J, Li Z, Liu L. Testing for mediation effect with application to human microbiome data. Stat Biosci. 2021. DOI: 10.1007/s12561-019-09253-3. PMID: 34093887; PMCID: PMC8177450
Examples
if (FALSE) { # \dontrun{
# Note: In the following example, M1, M2, and M3 are true mediators.
head(MicrobiomeData$PhenoData)
hima_microbiome.fit <- hima_microbiome(
X = MicrobiomeData$PhenoData$Treatment,
Y = MicrobiomeData$PhenoData$Outcome,
OTU = MicrobiomeData$Mediator,
COV = MicrobiomeData$PhenoData[, c("Sex", "Age")],
FDRcut = 0.05,
verbose = TRUE
)
hima_microbiome.fit
} # }