hima_quantile
is used to estimate and test high-dimensional quantile mediation effects.
Usage
hima_quantile(
X,
M,
Y,
COV = NULL,
penalty = c("MCP", "SCAD", "lasso"),
topN = NULL,
tau = 0.5,
scale = TRUE,
Bonfcut = 0.05,
verbose = FALSE,
...
)
Arguments
- X
a vector of exposure. Do not use
data.frame
ormatrix
.- M
a
data.frame
ormatrix
of high-dimensional mediators. Rows represent samples, columns represent mediator variables.- Y
a vector of continuous outcome. Do not use
data.frame
ormatrix
.- COV
a matrix of adjusting covariates. Rows represent samples, columns represent variables. Can be
NULL
.- penalty
the penalty to be applied to the model (a parameter passed to function
conquer.cv.reg
in packageconquer
. Either'MCP'
(the default),'SCAD'
, or'lasso'
.- topN
an integer specifying the number of top markers from sure independent screening. Default =
NULL
. IfNULL
,topN
will be2*ceiling(n/log(n))
, wheren
is the sample size. If the sample size is greater than topN (pre-specified or calculated), all mediators will be included in the test (i.e. low-dimensional scenario).- tau
quantile level of outcome. Default =
0.5
. A vector of tau is accepted.- scale
logical. Should the function scale the data? Default =
TRUE
.- Bonfcut
Bonferroni-corrected p value cutoff applied to select significant mediators. Default =
0.05
.- verbose
logical. Should the function be verbose? Default =
FALSE
.- ...
reserved passing parameter.
Value
A data.frame containing mediation testing results of selected mediators (Bonferroni-adjusted p value <Bonfcut
).
- Index:
mediation name of selected significant mediator.
- alpha_hat:
coefficient estimates of exposure (X) –> mediators (M) (adjusted for covariates).
- alpha_se:
standard error for alpha.
- beta_hat:
coefficient estimates of mediators (M) –> outcome (Y) (adjusted for covariates and exposure).
- beta_se:
standard error for beta.
- IDE:
mediation (indirect) effect, i.e., alpha*beta.
- rimp:
relative importance of the mediator.
- pmax:
joint raw p-value of selected significant mediator (based on Bonferroni method).
References
Zhang H, Hong X, Zheng Y, Hou L, Zheng C, Wang X, Liu L. High-Dimensional Quantile Mediation Analysis with Application to a Birth Cohort Study of Mother–Newborn Pairs. Bioinformatics. 2024. DOI: 10.1093/bioinformatics/btae055. PMID: 38290773; PMCID: PMC10873903
Examples
if (FALSE) { # \dontrun{
# Note: In the following example, M1, M2, and M3 are true mediators.
head(QuantileData$PhenoData)
hima_quantile.fit <- hima_quantile(
X = QuantileData$PhenoData$Treatment,
M = QuantileData$Mediator,
Y = QuantileData$PhenoData$Outcome,
COV = QuantileData$PhenoData[, c("Sex", "Age")],
tau = c(0.3, 0.5, 0.7),
scale = FALSE, # Disabled only for simulation data
Bonfcut = 0.05,
verbose = TRUE
)
hima_quantile.fit
} # }