hima_survival
is used to estimate and test high-dimensional mediation effects for survival data.
Usage
hima_survival(
X,
M,
OT,
status,
COV = NULL,
topN = NULL,
scale = TRUE,
FDRcut = 0.05,
verbose = FALSE
)
Arguments
- X
a vector of exposure. Do not use
data.frame
ormatrix
.- M
a
data.frame
ormatrix
of high-dimensional mediators. Rows represent samples, columns represent mediator variables.- OT
a vector of observed failure times.
- status
a vector of censoring indicator (
status = 1
: uncensored;status = 0
: censored)- COV
a matrix of adjusting covariates. Rows represent samples, columns represent variables. Can be
NULL
.- topN
an integer specifying the number of top markers from sure independent screening. Default =
NULL
. IfNULL
,topN
will beceiling(n/log(n))
, wheren
is the sample size. If the sample size is greater than topN (pre-specified or calculated), all mediators will be included in the test (i.e. low-dimensional scenario).- scale
logical. Should the function scale the data? Default =
TRUE
.- FDRcut
HDMT pointwise FDR cutoff applied to select significant mediators. Default =
0.05
.- verbose
logical. Should the function be verbose? Default =
FALSE
.
Value
A data.frame containing mediation testing results of significant mediators (FDR <FDRcut
).
- Index:
mediation name of selected significant mediator.
- alpha_hat:
coefficient estimates of exposure (X) –> mediators (M) (adjusted for covariates).
- alpha_se:
standard error for alpha.
- beta_hat:
coefficient estimates of mediators (M) –> outcome (Y) (adjusted for covariates and exposure).
- beta_se:
standard error for beta.
- IDE:
mediation (indirect) effect, i.e., alpha*beta.
- rimp:
relative importance of the mediator.
- pmax:
joint raw p-value of selected significant mediator (based on HDMT pointwise FDR method).
References
Zhang H, Zheng Y, Hou L, Zheng C, Liu L. Mediation Analysis for Survival Data with High-Dimensional Mediators. Bioinformatics. 2021. DOI: 10.1093/bioinformatics/btab564. PMID: 34343267; PMCID: PMC8570823
Examples
if (FALSE) { # \dontrun{
# Note: In the following example, M1, M2, and M3 are true mediators.
head(SurvivalData$PhenoData)
hima_survival.fit <- hima_survival(
X = SurvivalData$PhenoData$Treatment,
M = SurvivalData$Mediator,
OT = SurvivalData$PhenoData$Time,
status = SurvivalData$PhenoData$Status,
COV = SurvivalData$PhenoData[, c("Sex", "Age")],
scale = FALSE, # Disabled only for simulation data
FDRcut = 0.05,
verbose = TRUE
)
hima_survival.fit
} # }